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Abstract

This document highlights and addresses architecture level software development issues facing re-
searchers and practitioners in the field of Computer Vision. A new framework, or architectural style,
called SAI, is introduced. It provides a formalism for the design, implementation and analysis of software
systems that perform distributed parallel processing of generic data streams. Architectural patterns are
illustrated with a number of demonstration projects ranging from single stream automatic real-time video
processing to fully integrated distributed interactive systems mixing live video, graphics and sound. SAI
is supported by an open source architectural middleware called MFSM.

1 Introduction

1.1 Motivation

The emergence of comprehensive code libraries in a research field is a sign that researchers and practitioners
are seriously considering and addressing software engineering and development issues. In this sense, the
introduction of the Intel OpenCV library [2] certainly represents an important milestone for Computer Vision.
The motivation behind building and maintaining code libraries is to address reusability and efficiency, by
providing a set of “standard” data structures and implementations of classic algorithms. In a field like
Computer Vision, with a rich theoretical history, implementation issues are often regarded as secondary to
the pure research components outside of specialty subfields, such as Real-Time Computer Vision (see e.g.
[27]). Nevertheless, beyond reducing development and debugging time, good code design and reusability
are key to such fundamental principles of scientific research as experiment reproducibility and objective
comparison with the existing state of the art.

For example, these issues are apparent in the subfield of video processing/analysis, which, due to the
conjunction of technical advances in various enabling hardware performance (including processors, cameras
and storage media) and high priority application domains(e.g. visual surveillance [3]), has recently become
a major area of research. One of the most spectacular side effects of this activity is the amount of test data
generated, an important part of which is made public. The field has become so rich in analysis techniques
that any new method must almost imperatively be compared to the state-of the art in its class to be seriously
considered by the community. Reference data sets, complete with ground truth data, have been produced
and compiled for this very purpose (see e.g. [6, 7, 8, 9]). Similarly, a reliable, reusable and consistent body
of code for established–and “challenger”–algorithms could certainly facilitate the performance comparison
task. Some effort is made toward developing open platforms for evaluation (see e.g. [19]). Such properties
as modularity contribute to code reuse, and fair and consistent testing and comparison. However, building
a platform generic enough to not only accommodate current methods, but also allow to incorporate other
relevant algorithms, some of them not yet developed, is a major challenge. It is well known in the software
industry that introducing features that were not planned for at design time in a software system is a least
an extremely hard problem, and generally a recipe for disaster. Software Engineering is the field of study
devoted to addressing these and other issues of software development in industrial settings. The parameters
and constraints of industrial software development are certainly very different of that encountered in a
research environment, and thus Software Engineering techniques are often unadapted to the latter.
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In a research environment, software is developed to demonstrate the validity and evaluate the performance
of an algorithm. The main performance aspect on which algorithms are evaluated is of course the accuracy
of their output. Another aspect of performance is measured in terms of system throughput, or algorithm
execution time. This aspect is all the more relevant as the amount of data to be processed increases, leaving
less and less time for storing and off-line processing. The metrics used for this type of performance assessment
are often partial. In particular, theoretical complexity analysis is but a prediction tool, which cannot account
for the many other factors involved in a particular system’s performance. Many algorithms are claimed to
be “real-time.” Some run at a few frames per second, but “could be implemented to run in real-time,”
or simply will run faster on the next generation machines (or the next...). Others have been the object of
careful design and specialization to allow a high processing rate on constrained equipment. The general
belief that increasing computing power can make any system (hardware and software) run faster relies on
the hidden or implied assumption of system scalability, a property that cannot and should not be taken for
granted. Indeed, the performance of any given algorithm implementation is highly dependent on the overall
software system in which it is operated (see e.g. [20]). Video analysis applications commonly involve image
input (from file or camera) and output (to file or display) code, the performance of which can greatly impact
the perceived performance of the overall application, and in some cases the performance of the individual
algorithms involved in the processing. Ideally, if an algorithm or technique is relevant for a given purpose,
it should be used in its best available implementation, on the best available platform, with the opportunity
of upgrading either when possible.

As Computer Vision is maturing as a field, and finds new applications in a variety of domains, the issue
of interoperability becomes central to its successful integration as an enabling technology in cross-disciplinary
efforts. Technology transfer from research to industry could also be facilitated by the adoption of relevant
methodologies in the development of research code.

If these aspects are somewhat touched in the design of software libraries, a consistent, generic approach
requires a higher level of abstraction. This is the realm of Software Architecture, the field of study concerned
with the design, analysis and implementation of software systems. Shaw and Garlan give the following
definition in [26]:

“As the size and complexity of software systems increase, the design and specification of overall
system structure become more significant issues than the choice of algorithms and data structures
of computation. Structural issues include the organization of a system as a composition of
components; global control structures; the protocols for communication, synchronization and data
access; the assignment of functionality to design elements; the composition of design elements;
physical distribution; scaling and performance; dimensions of evolution; and selection among
design alternatives. This is the Software Architecture level of design.”

They also provide the framework for architecture description and analysis used in the remainder of this
document. A specific architecture can be described as a set of computational components, and a their
inter-relations, or connectors. An architectural style characterizes families of architectures that share some
patterns of structural organization. Formally, an architectural style defines a vocabulary of components and
connector types, and a set of constraints on how instances of these types can be combined to form a valid
architecture.

If Software Architecture is a relatively young field, software architectures have been developed since
the first software was designed. Classic styles have been identified and studied informally and formally,
their strengths and shortcomings analyzed. A major challenge for the software architect is the choice of an
appropriate style when designing a given system, as an architectural style may be ideal for some applications,
while unadapted for others. The goal here is to help answer this question by providing the Computer Vision
community with a flexible and generic architectural model. The first step toward the choice–or the design–of
an architectural style is the identification and formulation of the core requirements for the target system(s).
An appropriate style should support the design and implementation of software systems capable of handling
images, 2-D and 3-D geometric models, video streams, various data structures, in a variety of algorithms
and computational frameworks. These applications may be interactive and/or have real-time constraints.
Going beyond pure Computer Vision systems, processing of other data types, such as sound and haptics
data, should also be supported, in a consistent manner, in order to compose large scale integrated systems,
such as immersive simulations. Note that interaction has a very particular status in this context, as data
originating from the user can be both an input to an interactive Computer Vision system, and the output
of a vision-based perceptual interface subsystem.
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This set of requirements can be captured under the general definition of cross-disciplinary dynamic
systems, possibly involving real-time constraints, user immersion and interaction. A fundamental underlying
computational invariant across such systems is distributed parallel processing of generic data-streams. As
no existing architectural model could entirely and satisfactorily account for such systems, a new model was
introduced.

1.2 Contribution

SAI (Software Architecture for Immersipresence) is a new software architecture model for designing, analyz-
ing and implementing applications performing distributed, asynchronous parallel processing of generic data
streams. The goal of SAI is to provide a universal framework for the distributed implementation of algo-
rithms and their easy integration into complex systems that exhibit desirable software engineering qualities
such as efficiency, scalability, extensibility, reusability and interoperability. SAI specifies a new architectural
style (components, connectors and constraints). The underlying extensible data model and hybrid (shared
repository and message-passing) distributed asynchronous parallel processing model allow natural and effi-
cient manipulation of generic data streams, using existing libraries or native code alike. The modularity of
the style facilitates distributed code development, testing, and reuse, as well as fast system design and inte-
gration, maintenance and evolution. A graph-based notation for architectural designs allows intuitive system
representation at the conceptual and logical levels, while at the same time mapping closely to processes.

MFSM (Modular Flow Scheduling Middleware) [12] is an architectural middleware implementing the SAI
style. Its core element, the FSF library, is a set of extensible classes that can be specialized to define new
data structures and processes, or encapsulate existing ones (e.g. from libraries). MFSM is an open source
project, released under the GNU Lesser General Public License [1]. A number of software modules regroup
specializations implementing specific algorithms or functionalities. They constitute a constantly growing
base of open source, reusable code, maintained as part of the MFSM project. The project also includes
extensive documentation, including user guide, reference guide and tutorials.

1.3 Outline

This document is a an introduction to SAI, oriented toward Computer Vision. Section 2 identifies architec-
tural principles for distributed parallel processing of generic data streams. The most common architectural
styles for data stream processing applications are derived from the classic Pipes and Filters model. It is, for
example, the underlying model of the Microsoft DirectShow library, part of the DirectX suite [24]. After a
brief review of the Pipes and Filters architectural style, of its strengths and weaknesses, a new hybrid model
is introduced, that addresses the identified limitations while preserving the desirable properties. Section 3
formally defines the new model as the SAI architectural style. Its component and connector types are defined,
together with the corresponding constraints on instances interaction. The underlying data and processing
models are explicited and analyzed. Simultaneously, graphical symbols are introduced to represent each
element type. Together these symbols constitute a graph-based notation system for representing architec-
tural designs. Section 4 illustrates architectural patterns with a number of demonstration projects ranging
from single stream automatic real-time video processing to fully integrated distributed interactive systems
mixing live video, graphics and sound. Section 5 offers a summary of relevant architectural properties of this
new style. Section 6 gives a brief overview of MFSM. In conclusion, Section 7 offers a summary and some
perspectives on future directions for SAI.

2 Beyond Pipes and Filters

The Pipes and Filters model is an established (and popular) model for data stream manipulation and
processing architectures. In particular, it is a classic model in the domains of signal processing, parallel
processing and distributed processing [10], to name but a few. This section first offers an overview of the
classic Pipes and Filters architectural style, emphasizing its desirable properties, and highlighting its main
limitations. A hybrid model is then outlined, that aims at addressing the limitations while preserving the
desirable properties.
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Figure 1: Pipes and Filters.

2.1 The Pipes and Filters style

In the Pipes and Filters architectural style, the components, called filters have a set of inputs and a set
of outputs. Each component reads (and consumes) a stream of data on its input and produces a stream
of data on its output. The processing will usually be defined so that the component processes its input
incrementally, so that it can starts producing an output stream before it is finished receiving the totality of
its input stream, hence the name filter. The connectors are pipes in which the output stream of a filter flows
to the input of the next filter. Filters can be characterized by their input/output behavior: source filters
produce a stream without any input; transform filters consume an input stream and produce an output
stream; sink filters consume an input stream but do not produce any output. Figure 1 presents an overview.
Filters must be strictly independent entities: they do not share state information with other filters, the only
communication between filters occurs through the pipes. Furthermore, a filter’s specification might include
restrictions about its input and output streams, but it may not identify its upstream and downstream filters.
These rules make the model highly modular. A more complete overview can be found in [26], including
pointers to in-depth studies of the classic style and its variations and specializations.

The Pipes and Filters style has a number of good properties that make it an attractive and efficient
model for a number of applications. It is relatively simple to describe, understand and implement. It is also
quite intuitive, and allows to model systems while preserving the flow of data. Some interesting properties
result from the modularity of the model. Because of the well-defined and constrained interaction modalities
between filters, complex systems described in terms of data streams flowing from filter to filter are easily
understandable as a series of well defined local transformations. The implementation details of each filter
are irrelevant to the high level understanding of the overall system, as long as a logical definition of their
behavior is specified (input, transformation and output). The localization and isolation of computations
facilitates system design, implementation, maintenance and evolution. Reversely, filters can be implemented
and tested separately. Furthermore, because filters are independent, the model naturally supports parallel
and distributed processing.

These properties of the model provide an answer to some of the software issues highlighted in the intro-
duction. Because of their independence, filters certainly allow reusability and interoperability. Parallelism
and distributability, to a certain extent, should contribute to efficiency and scalability. It would seem that
it is a perfect model for real-time, distributed parallel processing of data streams. However, a few key
shortcomings and limitations make it unsuitable for designing cross-disciplinary dynamic systems, possibly
involving real-time constraints, user immersion and interaction.

The first set of limitations is related to efficiency. If the pipes are first-in-first-out buffers, as suggested by
the model, the overall throughput of a Pipes and Filters system is imposed by the transmission rate of the
slowest filter in the system. If filters independence provide a natural design for parallel (and/or distributed)
processing, the pipes impose arbitrary transmission bottlenecks that make the model non optimal. Figure 2
illustrates inefficiency limitations inherent to the distribution and transmission of data in Pipes and Filters
models. Each filter’s output data must be copied to its downstream filter(s)’ input, which can lead to
massive and expensive data copying. Furthermore, the model does not provide any consistent mechanism to
maintain correspondences between separate but related streams (e.g. when the results of different process
paths must be combined to produce a composite output). Such stream synchronization operations require
data collection from different repositories, possibly throughout the whole system, raising not only search-
related efficiency issues, but also dependency-driven distributed buffer maintenance issues. These can only
be solved at the price of breaking the strict filter independence rule, e.g. by the introduction of a higher
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Figure 2: Distributed parallel processing of data streams with the Pipes and Filters model.

level system manager.
The second set of limitations is related to the simplicity of the model. As they are not part of the data

streams, process parameters (state data stored in the filters) are not modeled consistently with process data
(input data streams). As a result, the pure Pipes and Filters model is ill-suited for designing interactive
systems, which can only be done at the price of increased filter complexity, and deviations from some of the
well-defined constraints that make for the model’s attractive simplicity. For example, a common practice for
interaction in Pipes and Filters systems is to provide access to the parameters (possibly at run-time) through
“control panels.” This solution however necessitates a separate mechanism for processing and applying the
interaction data. This is for example the solution adopted in Microsoft’s DirectShow, which relies on the
Microsoft Windows message-based graphical interface for parameter access. Such external solutions however
only bypass, and do not address, the fundamental inability of the style to consistently model general feed-
back loops, i.e. subsystems in which some processes are affected by some other processes’ outputs. This is a
direct result of the strict communication rules between filters, and in particular of the constraint that filters
not share any state information. Yet feed-back loops are a common pattern in dynamic systems, including
interactive systems: interaction is indeed a processing loop in which a user is involved (as illustrated in
section 4).

A careful consideration of system requirements in the target context of applicability guided a re-evaluation
of the Pipes and Filters model, and the formulation of modified constraints that preserve the positive aspects
while addressing the limitations identified above. Note that other properties were also considered, that are
out of the scope of this document (e.g. run-time system evolution). These will only be mentioned when
relevant in the remainder of this document.

2.2 A hybrid model

A few key observations, resulting from the analysis of system requirements for real-time interactive, immersive
applications, allow to formulate principles and concepts that address the shortcomings identified above.
Figure 3 offers a synopsis.

2.2.1 Time

A critical underlying concept in all user-related application domains (but by no means limited to these
domain) is that of time. Whether implicitly or explicitly modeled, time relations and ordering are inherent
properties of any sensory-related data stream (e.g. image streams, sound, haptics, etc.), absolutely necessary
when users are involved in the system, even if not on-line or in real-time. Users perceive data as streams of
dynamic information, i.e. evolving in time. This information only makes sense if synchronization constraints
are respected within each stream (temporal precedence) and across streams (precedence and simultaneity).
It follows that time information is a fundamental attribute of all process data, and should therefore be
explicitly modeled both in data structures and in processes.

Synchronization is a fundamental operation in temporal data stream manipulation systems. It should
therefore also be an explicit element of the architectural model. A structure called pulse is introduced to
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Figure 3: A hybrid shared repository and message passing model for distributed parallel processing of data
streams.

regroup synchronous data. Data streams are thus quantized temporally (not necessarily uniformly). As
opposed to the Pipes and Filters case, where data remains localized in the filters where it is created or used,
it is grouped in pulses, which flow from processing center to processing center along streams. The processing
centers do not consume their input, but merely use it to produce some output that is added to the pulse.
This also reduces the amount of costly data copy: in a subgraph implemented on a platform with shared
memory space, only a pointer to the evolving pulse structure will be transmitted from processing center to
processing center. Note that such processing centers can no longer be called filters.

2.2.2 Parallelism

Figure 4 illustrates system latency, which is the overall computation time for an input sample, and throughput
or output rate, inverse of the time elapsed between two consecutive output samples. The goal for high quality
interaction is to minimize system latency and maximize system throughput. In the sequential execution
model, latency and throughput are directly proportional. In powerful computers, this usually results in the
latency dictating the system throughput as well, which is arguably the worst possible case. In the Pipes
and Filters model, filters can run in parallel. Latency and throughput are thus independent. Because of the
parallelism, system latency can be reduced in most cases with careful design, while system throughput will
almost always be greatly improved. The sequential behavior of the pipes, however, imposes on the whole
system the throughput of the slowest filter. This constraint can actually be relaxed to yield an asynchronous
parallel processing model. Instead of being held in a buffer to be processed by order of arrival, each incoming
pulse is processed on arrival in the processing center, in a separate thread. Achievable throughput is now
optimal. It will actually be achieved if no hardware or software resources become exhausted (e.g. computing
power, memory, bus bandwidth, etc.). Of course, an asynchronous model requires to explicitly implement
synchronization when necessary, but only then.

2.2.3 Data classes

The Pipes and Filters model explicitly separates data streams and process parameters, which is both a
valid functional distinction, and a source of inconsistency in the model, leading to important limitations
as explained above. A re-consideration of this categorization, in the context of temporal data streams
processing, reveals two distinct data classes: volatile and persistent.

Volatile data is used, produced and/or consumed, and remains in the system only for a limited fraction
of its lifetime. For example, in a video processing application, the video frames captured and processed
are typically volatile data: after they have been processed and displayed or saved, they are not kept in the
system. Process parameters, on the other hand, must remain in the system for the whole duration of its
activity. Note that their value can change in time. They are dynamic yet persistent data.

All data, volatile or persistent, should be encapsulated in pulses. Pulses holding volatile data flow down
streams defined by connections between the processing centers, in a message passing fashion. They trigger
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Figure 4: Advantage of parallelism for time sensitive applications. Processes 2 and 3 are independent;
Process 4 depends on both 2 and 3. With a sequential execution model, the system latency introduced by
the processing also constrains the achievable system throughput, as the maximum output rate is inversely
proportional to the interval between the completion of the processes of two consecutive time samples. Parallel
processing allows to decorrelate latency and throughput, usually resulting in a reduction in latency and a
large increase in throughput. In the Pipes and Filters model, the sequential behavior of the pipes imposes
on the whole system the throughput of the slowest filter. In contrast, an asynchronous parallel model allows
to achieve optimal throughput.

computations, and are thus called active pulses. In contrast, pulses holding persistent information are held
in repositories, where the processing centers can access them in a concurrent shared memory access fashion.
This hybrid model combining message passing and shared repository communication, combined with a unified
data model, provides a universal processing framework. In particular, feed-back loops can now be explicitly
and consistently modeled.

From the few principles and concepts outlined above emerged a new architectural style. Because of the
context of its development, the new style was baptized SAI, for “Software Architecture for Immersipresence.”

3 SAI: A New Architectural Style

This section offers a more formal definition of the SAI architectural style. Graphical symbols are introduced
to represent each element type. Together these symbols constitute a graph-based notation system for rep-
resenting architectural designs. In addition, when available, the following color coding will be used: green
for processing, red for persistent data, blue for volatile data. Figure 5 presents a summary of the proposed
notation.

In the remainder of this document, the distinction between an object type and an instance of the type
will be made explicitly only when required by the context.

3.1 Components and connectors

The SAI style defines two types of components: cells and sources. Cells are processing centers. They do
not store any state data related to their computations. The cells constitute an extensible set of specialized
components that implement specific algorithms. Each specialized cell type is identified by a type name
(string), and is logically defined by its input data, its parameters and its output. Cell instances are repre-
sented graphically as green squares. A cell can be active or inactive, in which case it is transparent to the
system. Sources are shared repository of persistent data. Source instances are represented as red disks or
circles. Two types of connectors link cells to cells and cells to sources. Cell to source connectors give the
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Figure 5: Summary of notation for SAI designs. Cells are represented as squares, sources as disks or circles.
Source-cell connections are drawn as double or fat lines, while cell-cell connections are drawn as thin arrows
crossing over the cells. When color is available, cells are colored in green (reserved for processing); sources,
source-cell connections, passive pulses are colored in red (persistent information); streams and active pulses
are colored in blue (volatile information).

cell access to the source data. Cell to cell connectors define data conduits for the streams. The semantics of
these connectors are relaxed compared to that of pipes (which are FIFO queues): they do not convey any
constraint on the time ordering of the data flowing through them.

Cell and source instances interact according to the following rules. A cell must be connected to exactly
one source, which holds its persistent state data. A source can be connected to an arbitrary number of cells,
all of which have concurrent shared memory access to the data held by the source. A source may hold data
relevant to one or more of its connected cells, and should hold all the relevant data for each of its connected
cells (possibly with some overlap). Cell-source connectors are drawn as either double or fat red lines. They
may be drawn across cells (as if cells were connected together by these links) for layout convenience. Volatile
data flows in streams, which are defined by cell-to-cell connections. A cell can be connected to exactly one
upstream cell, and to an arbitrary number of downstream cells. Streams (and thus cell-cell connections) are
drawn as thin blue arrows crossing over the cells.

3.2 Data model

Data, whether persistent or volatile, is held in pulses. A pulse is a carrier for all the synchronous data
corresponding to a given time stamp in a stream. Information in a pulse is organized as a mono-rooted
composition hierarchy of node objects. The nodes constitute an extensible set of atomic data units that
implement or encapsulate specific data structures. Each specialized node type is identified by a type name
(string). Node instances are identified by a name. The notation adopted to represent node instances and
hierarchies of node instances makes use of nested parentheses, e.g.: (NODE TYPE ID “Node name” (...) ...
). This notation may be used to specify a cell’s output, and for logical specification of active and passive
pulses.

Each source contains a passive pulse, which encodes the instantaneous state of the data structures held
by the source. Volatile data flows in streams, that are temporally quantized into active pulses. Pulses are
represented graphically as a root (solid small disk) and a hierarchy of nodes (small circles); passive pulses
may be rooted in the circle or disk representing the source.

3.3 Processing model

When an active pulse reaches a cell, it triggers a series of operations that can lead to its processing by the
cell (hence the “active” qualifier). Processing in a cell may result in the augmentation of the active pulse
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Figure 6: Pulse filtering. Each cell is associated with its required volatile and persistent data structures,
in the form of substructures called active and passive filters (respectively). Pulses are searched for these
structures in an operation called filtering, which results in the creation of handles that can be used during
processing for direct access to relevant nodes.

(input data), and/or update of the passive pulse (process parameters). The processing of active pulses is
carried in parallel, as they are received by the cell. Since a cell process can only read the existing data in
an active pulse, and never modify it (except for adding new nodes), concurrent read access will not require
any special precautions. In the case of passive pulses, however, appropriate locking (e.g. through critical
sections) must be implemented to avoid inconsistencies in concurrent shared memory read/write access.

3.4 Dynamic data binding

Passive pulses may hold persistent data relevant to several cells. Therefore, before a cell can be activated,
the passive pulse must be searched for the relevant persistent data. As data is accumulated in active pulses
flowing down the streams through cells, it is also necessary for a cell to search each active pulse for its input
data. If the data is not found, or if the cell is not active, the pulse is transmitted, as is, to the connected
downstream cells. If the input data is found, then the cell process is triggered. When the processing is
complete, then the pulse, which now also contains the output data, is passed downstream.

Searching a pulse for relevant data, called filtering, is an example of run-time data binding. The target
data is characterized by its structure: node instances (type and name) and their relationships. The structure
is specified as a filter or a composition hierarchy of filters. Note that the term filter is used here in its “sieving”
sense. Figure 6 illustrates this concept. A filter is an object that specifies a node type, a node name or name
pattern and eventual subfilters corresponding to subnodes. The filter composition hierarchy is isomorphic
to its target node structure. The filtering operation takes as input a pulse and a filter, and, when successful,
returns a handle or hierarchy of handles isomorphic to the filter structure. Each handle is essentially a
pointer to the node instance target of the corresponding filter. When relevant, optional names inherited
from the filters allow to identify individual handles with respect to their original filters.

The notation adopted for specifying filters and hierarchies of filters is nested square brackets. Each filter
specifies a node type, a node instance name or name pattern (with wildcard characters), an optional handle
name, and an eventual list of subfilters, e.g.: [NODE TYPE ID “Node name” handle id [...] ... ]. Optional
filters are indicated by a star, e.g.: [NODE TYPE ID “Node name” handle id]*.

When several targets in a pulse match a filter name pattern, all corresponding handles are created. This
allows to design processes whose input (parameters or stream data) number is not fixed. If the root of the
active filter specifies a pattern, the process method is invoked for each handle generated by the filtering
(sequentially, in the same thread). If the root of the passive filter specifies a pattern, only one passive handle
will be generated (pointing to the first encountered node satisfying the pattern).

3.5 Architectural design specification

A particular system architecture is specified at the conceptual level by a set of source and cell instances, and
their inter-connections. Specialized cells may be accompanied by a description of the task they implement.
Source and cell instances may be given names for easy reference. In some cases, important data nodes and
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outputs may be specified schematically to emphasize some design aspects. Section 4 contains several example
conceptual graphs for various systems.

A logical level description of a design requires to specify, for each cell, its active and passive filters and its
output structure, and for each source, the structure of its passive pulse. Table 1 summarizes the notations
for logical level cell definition. Filters and nodes are described using the nested square brackets and nested
parentheses notations introduced above. By convention, in the cell output specification, (x) represents the
pulse’s root, (.) represents the node corresponding to the root of the active filter, and (..) represents its
parent node.

ClassName CELL TYPE ID
(ParentClass)
Active filter [NODE TYPE ID “Node name” handle id

[...] ... ]
Passive filter [NODE TYPE ID “Node name” handle id

[...] ... ]
Output (NODE TYPE ID

“default output base name–more if needed”
(...) ... )

Table 1: Notations for logical cell definition.

4 Example Designs

Architectural patterns are now illustrated with demonstration projects ranging from single stream, automatic
real-time video processing to fully integrated distributed interactive systems mixing live video, graphics and
sound. The projects are tentatively presented in order of increasing complexity, interactivity and cross-
disciplinary integration. Each project is briefly introduced, its software architecture described and analyzed.
Key architectural patterns, of general interest, are highlighted. These include feed-back loops, real-time
incremental processing along the time dimension, interaction loops, real-time distributed processing, mixing
and synchronization of multiple independent data streams.

4.1 Real-time video segmentation and tracking

The development of real-time video analysis applications was actually a steering concern during the devel-
opment of the SAI style. The system presented here was used as a testbed for the implementation, testing
and refinement of some SAI concepts [18].

The video analysis tasks performed are low level segmentation and blob tracking. The segmentation is
performed by change detection using an adaptive statistical color background model (the camera is assumed
stationary). A review of background maintenance algorithms can be found in [28]. Blob tracking is performed
using a new multiresolution algrithm whose description is out of the scope of this document.

Figure 7 shows the conceptual level architecture of the software system. It is build around a single stream
going through a number of cells. The graph can be decomposed into four functional subgraphs: capture,
segmentation, tracking, visualization. The stream originates in the video input cell, which produces, at a
given rate, pulses containing an image coming either from a live capture device or a video file. This cell and
its source constitute the capture unit of the application. The stream then goes through the segmentation
unit, which is analyzed below. Coming out of the segmentation, the stream goes through a tracking cell.
The result visualization unit is composed of a rendering and a display subunits. Rendering of a persistent
structure (here, the tracking graph) will be illustrated in a more general context in another example below
(“Live Video in Animated 3-D Graphics”). The display cell simply puts on the screen its input images, in
this case the composite frames produced by the renderer.

A very interesting aspect of this system, and certainly the most innovative when it was introduced, is
the asynchronous parallel implementation of the segmentation algorithm, which contains a feed-back loop.
The corresponding conceptual graph is also a flow graph of the algorithm. Each input frame is compared
with a statistical background model. For each pixel, a decision is made whether it is an observation of
the background or of an occluding element. The output is a foreground binary mask. This comparison is
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Figure 7: Conceptual graph for real-time color background model-based segmentation and multi-resolution
graph tracking application.

performed by the background comparison cell. Each pulse, after going through this cell, contains the input
image and a binary foreground image, which is used by the connected components cell to produce a labeled
components image, added to the pulse. The input image and the labeled components image are used by the
background update cell to update the distributions in the background model. Since the comparison and the
update cells both use the persistent background model, they are both connected to a common source that
holds the background model structure. This path forms a feed back loop in which the result of the processing
of each frame is used to update the adaptive background model. Because of the asynchrony of the processing,
by the time the background model is updated with the result of the processing of a given frame, many other
frames might have been compared to the model. In this particular context, the quality of the result is not
affected–in fact, it is common practice in background model maintenance to perform only partial updates
at each frame, in order to reduce computational load–and the overall system throughput permitted by this
design is always significantly larger than that achievable in a sequential design. Another type of parallelism
is illustrated in the branching of the stream to follow independent parallel paths. After coming out of the
connected components cell, the stream follows a path to the update cell, and another path through tracking
and finally visualization. While pulse-level multithreading principally improves throughput, stream-level
parallelism has a major impact on latency. In this case, the result of the processing should be used as soon
as possible for visualization and for update, in no arbitrarily imposed order. As long as computing resources
(in a general sense) are available, and assuming fair scheduling, the model allows to achieve minimal latency.

Figure 8 shows two non consecutive frames from one of the PETS 2002 [7] test sequences, with tracked
blobs and their trajectories over a few frames. Figure 9 presents three consecutive output frames obtained
from the processing of professional racquetball videos. The ball and the players are detected and tracked in
real-time.

Quantitative performance metrics are discussed below in section 5. In the case of live video processing,
the throughput of the system impacts the quality of the results: a higher throughput allows the background
model to adapt to changing conditions more smoothly.

The modular architecture described here can be used to test different algorithms for each unit (e.g.
segmentation algorithms) in an otherwise strictly identical setting. It also constitute a foundation platform
to which higher levels of processing can be added incrementally. The SAI style and its underlying data
and processing models not only provide the necessary architectural modularity for a test platform, but
also the universal modeling power to account for any algorithm, whether existing or yet to be formulated.
In conjunction, the same platform also ensures that the best possible performance is achievable (provided
correct architectural design and careful implementation of all the elements involved).
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Figure 8: Object segmentation and tracking results in a PETS02 test sequence. The examples shown are
two sample output composite frames taken at different times in the original video.

Figure 9: Segmentation and tracking of the players and the ball in professional racquetball video. The
examples shown are three consecutive output composite frames.

4.2 Real-time video painting

The Video Painting project was developed as a demonstration of the real-time video stream processing ability
provided by the SAI architectural style. It also provided valuable insight on the design and implementation
of algorithms performing incremental processing along the time dimension, i.e. between different samples in
a same stream.

The technical core of the application is a feature-based, multi-resolution scheme to estimate frame to
frame projective or affine transforms [21]. These transforms are used to warp the frames to a common space
to form a mosaic. The mosaic image itself is a persistent structure that evolves as more images are processed,
hence the name “video painting.”

In a traditional sequential system, the transform between each pair of consecutive frames would be
computed, and each frame would be added to the mosaic by combination of all the transforms between a
reference frame and the current frame. Figure 10 shows the application graph for the SAI design. A live
input unit creates the single stream, with frames captured from a camera. A simple cell computes the image
pyramid associated with each input frame, and necessary for the multi-resolution frame-to-frame transform
estimation performed by the next downstream cell. Comparing two samples of the same stream requires
to make one persistent, which becomes the reference. Transforms are thus computed between the current
frame and a reference frame. For the algorithm to work properly, though, the compared frames cannot be
too far apart. The reference frame must therefore be updated constantly. Because of the asynchrony of the
processing, the reference frame is not necessarily the frame “right before” the current frame in the stream.
The simplistic handling of frames relationships in the sequential model is no longer sufficient. Accurate time
stamps allow a more general approach to the problem. The transforms computed between two frames are no
longer implicitly assumed to relate two consecutive frames, separated from a fixed time interval, but between
two frames of arbitrary time stamps. For efficiency reasons, the mosaic is also computed incrementally. A
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Figure 10: Conceptual graph for “video painting” application (real-time mosaicking).

persistent image containing the latest available version of the mosaic is maintained. Each new frame is
warped and pasted on a copy of the mosaic by computing the accumulated transform from the frame to
the mosaic reference frame. To that effect, with the mosaic is also stored the accumulated transform from
the time stamp of the reference mosaic frame to the time stamp of the latest frame added, which is the
time stamp for the mosaic. When a new frame is processed, the transform from the mosaic time stamp
to the frame is computed by linear interpolation using the transform computed between the frame and the
reference frame. This is possible only because time is an explicit component of the model. The transform is
then composed with the accumulated transform to produce a new accumulated transform, used to warp the
current frame to mosaic space. After pasting of the warped frame, the updated mosaic image is copied into
the persistent mosaic image to become the latest reference. The accumulated transform is also updated. Note
that a locking mechanism (e.g. critical section) is necessary to ensure consistency between the persistent
mosaic and the accumulated transform as they are accessed by different threads. In this design, the updated
mosaic is also added to the active pulse so that the dynamic stream of successive mosaics can be viewed with
an image display cell. Figure 11 shows two example mosaics painted in real-time from a live video stream.
The horizontal black lines are image warping artifacts.

This application is an example where system latency and throughput directly impact the quality of the re-
sults. The transform estimation process degrades with the dissimilarity between the frames. A lower latency
allows faster reference turnaround and thus smaller frame to frame dissimilarity. Higher throughput allows
to build a finer mosaic. Embedding established algorithms into a more general parallel processing framework
allows to achieve high quality output in real-time. Furthermore, explicit handling of time relationships in the
design might give some insight on real-time implementations of more complex mosaic building techniques,
e.g. involving global constraints to correct for registration error accumulation.

4.3 Handheld mirror simulation

The Virtual Mirror project [16, 15] started as a feasibility study for the development and construction of a
handheld mirror simulation device.

The perception of the world reflected through a mirror depends on the viewer’s position with respect to
the mirror and the 3-D geometry of the world. In order to simulate a real mirror on a computer screen,
images of the observed world, consistent with the viewer’s position, must be synthesized and displayed in
real-time. This is of course geometrically impossible, but with a few simplifying assumptions (e.g. planar
world), the image transform required was made simple yet convincing enough to consider building an actual
device. The current prototype system (see Figure 12) is comprised of an LCD screen manipulated by the
user, a single camera fixed on the screen, and a tracking device. The continuous input video stream and
tracker data is used to synthesize, in real-time, a continuous video stream displayed on the LCD screen. The
synthesized video stream is a close approximation of what the user would see on the screen surface if it were
a real mirror.

Figure 13 shows the corresponding conceptual application graph. The single stream application does not
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Figure 11: Video Painting results.

involve any complicated structure. The stream originates in a live video input cell. A tracker input cell
adds position and orientation data to the stream. A mirror transform cell uses the synchronous image and
tracking data to synthesize the mirror simulation image, which is then presented to the user by an image
display cell.

The two major difficulties in this application are (1) synchronizing the various input streams (video and
tracking data) to compute a consistent result; and (2) displaying the result with a low enough latency and
a high enough throughput to produce a convincing simulation. The use of pulses in the SAI model makes
synchronization a natural operation, involving no superfluous delays or computations. The asynchronous
parallel processing model allow high frame rates and low latency.

The essential purpose of this system is interaction. Interaction can be seen as a particular data stream
loop feeding the user with a perceptual representation of the internal model (experience), collecting the
users reaction through various sensory devices and modifying the state of the internal model accordingly
(influence). From the systems point of view, these data streams are volatile, and the processes involved in
producing and processing them are of the same nature as those carrying procedural internal evolution tasks.
Here, the internal model is the mirror, implicit in the computations carried by the mirror transform cell.
The user experiences the system through the image displayed on the handheld screen, and influences it by
moving her head or the screen.

Note that the way live video (frames) and corresponding tracker data are synchronized in the application
as described in the conceptual graph is based on the assumption that the delay between the frame capture
in the live input cell (push mechanism acting as pulse trigger), and the capture of tracker data in the tracker
input cell (pull mechanism), is small enough that no inconsistency can be perceived. This approach happens
to work in this case, even when the system is running on a modest platform, but certainly does not generalize
to synchronization in more sophisticated settings. This illustrates the flexibility of the SAI style, that allows
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Figure 13: The Virtual Mirror application graph.

to devise general structures, as well as simplified or ad hoc design when allowed by the application.
This project also illustrates the power of SAI for system integration. The modularity of the model

ensures that components developed independently (but consistently with style rules) will function together
seamlessly. This allows code re-use (e.g. the image node, and the live video capture and image display cells
already existed), and distributed development and testing of new node and cell types. The whole project
was completed in only a few months with very limited resources.

The mirror simulation system can be used as a research platform. For example, it is a testbed for
developing and testing video analysis techniques that could be used to replace the magnetic trackers, including
face detection and tracking, and gaze tracking. The device itself constitutes a new generic interface for
applications involving rich, first-person interaction. A straightforward application is the Daguerréotype
simulation described in [22]. Beyond technical and commercial applications of such a device, the use of
video analysis and graphics techniques will allow artists to explore and interfere with what has always been
a private, solitary act, a person looking into a mirror.

4.4 IMSC Communicator

The IMSC Communicator is an experimental extensible platform for remote collaborative data sharing. The
system presented here is an early embodiment of a general research platform for remote interaction. From
a Computer Vision point of view, the architectural patterns highlighted here directly apply to the design of
distributed processing of multiple video streams.

Popular architectures for communication applications include Client/Server and Peer To Peer. Different
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Figure 14: Simple generic networking for distributed applications.

elements of the overall system are considered separate applications. Although these models can either be
encapsulated or implemented in the SAI style, a communication application designed in the SAI style can also
be considered as a single distributed application graph, in which some cell to cell connections are replaced
with network links. From this point of view, specific network architectures would be implemented in the SAI
style, as part of the overall distributed application.

The core pattern of the Communicator is a sequence of cells introducing network communication between
two independent subgraphs. Figure 14 shows an example sequence comprising encoding, compression and
networking (send) on the emitting side, networking (receive), decompression and decoding on the receiving
side. The encoding cell flattens a node structure into a linear buffer so that the structure can later be
regenerated. This encoding can be specific of various data types, as is the case for the example described
here. A general encoding scheme could for example be based on XML. The output of an encoding cell
is a character string (binary or text). The compression cell takes as input the encoded character string,
and produces a compressed buffer. The compression scheme used can be input data dependent, or generic,
in which case it should be lossless. For the first experiments, a simple compression cell, and matching
decompression cell, were developed, that encapsulate the open source LZO library [25] for real-time lossless
compression/decompression. Note that the compression step is optional. The networking cells are responsible
for packetizing and sending incoming character strings on one side, and receiving the packets and restoring
the string on the other side. Different modalities and protocols can be implemented and tested. The first
networking cells were implemented using Windows Sockets, using either TCP/IP or UDP. The decompression
cell regenerates the original character string from the compressed buffer. The decoding cell regenerates the
node structure into a pulse, from the encoded character string.

Once a generic platform is available for developing and testing data transfer modalities, support for
various specific data types can be added. The very first test system supported video only, using existing live
video capture and image display cells. For the next demonstration, a new live capture cell for both image
and sound was developed using Microsoft DirectShow [24]. Another new cell was developed for synchronized
rendering of sound and video, also using DirectShow.

Figure 15 shows the conceptual graph for an early embodiment of the 2-way communicator, with example
screen shots. A background replacement unit, based on the segmentation by change detection presented above
in section 4.1, was added to the capture side to illustrate how the modularity of the architecture allows to
“plug-and-play” subgraphs developed independently. Having different processing of video and sound also
demonstrates the advantages of adopting an asynchronous model, and of performing synchronization only
when necessary, in this case in the display cell.

4.5 Live video in animated 3-D graphics

The example presented in this section is a real-time, interactive application requiring manipulation of het-
erogenous data streams [14]. A video stream (captured live or read from a file) is used as surface texture on
an animated 3-D model, rendered in real-time. The (virtual) camera used for rendering can be manipulated
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Figure 15: Conceptual graph for an early version of the IMSC Communicator, with support for video
(synchronized image and sound).

in real-time (e.g. with a gamepad or through a head tracking device), making the system interactive. This
system was developed to illustrate the design of a scene graph-based graphics toolkit, and the advantages
provided by the SAI style for manipulating independently and synchronizing different data streams in a
complex interactive (possibly immersive) setting.

From a Computer Vision point of view, this example illustrates how the SAI style allows to manipulate
video streams and geometric models in a consistent framework. The same architectural patterns generalize
to manipulating generic data streams and persistent models.

Figure 16 shows the system’s conceptual graph. The graph is composed of four functional subgraphs,
corresponding to four independent streams, organized around a central source that holds the 3-D model
representation in the form of a scene graph, and various process parameters for the different connected cells.
The rendering stream generates images of the model. The control stream updates the (virtual) camera
position based on user input. Together, the rendering and control units (including the shared source) form
an interaction loop with the user. The animation stream drives the dynamic evolution of the 3-D model.
The texturing stream places images captured from a video source (camera or file) in the texture node in the
scene graph. Interaction and modeling are now analyzed in more detail.

4.5.1 Interaction

As observed above, interaction is a particular data stream loop feeding the user with a perceptual represen-
tation of the internal model (experience), collecting the users reaction through various sensory devices and
modifying the state of the internal model accordingly (influence). From the systems point of view, these data
streams are volatile, and the processes involved in producing and processing them are of the same nature as
those carrying procedural internal evolution tasks, and are thus modeled consistently in the SAI style.

Any such interaction subsystem, an example of which is the user loop on the right half of figure 16, will
involve instances of cells belonging to a few typical functional classes: inputs, effectors, renders, displays.
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Figure 16: Conceptual graph for integrating real-time rendering of an animated 3-D model with live video
mapping and interactive camera control.

Input collect user input and generate the corresponding active pulses on streams. These components en-
capsulate such devices as mouse, keyboard, 3-D tracker, etc. Effector cells use the input data to modify
the state of the internal model (including possibly process parameters). In this example, the effector is the
camera control cell. In some cases, the data produced by the input device requires some processing in order
to convert it into data that can be used by the effector. This is the case for example with vision-based
perceptual interfaces, in which the input device is a camera, which produces a video stream that must be
analyzed to extract the actual user input information. Such processes can be implemented efficiently in the
SAI style (see e.g. [18]), and be integrated consistently in an interactive application graph. Rendering and
display elements produce and present a perceptual view of the internal model to the user, closing the loop.
Display cells encapsulate output devices, such as screen image display, stereo image displays, sound output,
etc. Note that in some cases, e.g. for haptics, input and display functions are handled by the same device.

For interaction to feel natural, latency (or lag: the delay between input action and output response)
must be kept below a threshold above which the user will perceive an inconsistency between her actions
and the resulting system evolution. This threshold is dependent on the medium and on the application, but
studies show that latency has a negative effect on human performance [23]. For example, human performance
tests in virtual environments with head-coupled display suggest a latency threshold of the order of 200ms
above which performance becomes worse, in terms of response time, than with static viewing [11]. The
same study also suggests that latency has a larger impact on performance than frame update rate. System
throughput (including higher data bandwidth) is more related to the degree of immersiveness, and could
influence perceived latency. In any case, it is quite intuitive and usually accepted that interactive systems
can always benefit from lower latency and higher throughput. A careful design, an appropriate architecture
and an efficient implementation are therefore critical in the development of interactive applications.

Renderers are an example of simultaneous manipulation of volatile and persistent data. A rendering cell
produces perceptual instantaneous snapshots (volatile) of the environment (persistent) captured by a virtual
device such as microphone or camera, which is itself part of the environment model. The intrinsic parallelism
and synchronization mechanism of the SAI style are particularly well suited for well defined, consistent and
efficient handling of these type of tasks. The rendering stream is generated by an instance of the Pulsar cell
type, a fundamental specialized component that produces empty pulses on the stream at a given rate. In
this example, the rendering cell adds to the pulse an image of the 3-D model, synthesized using the OpenGL
library. Persistent data used by the rendering, apart from the scene graph, include a virtual camera, and
rendering parameters such as the lighting model used, etc. An image display cell puts the rendered frames
on the screen.

User input streams can follow either a pull or push model. In the pull approach, which is used in this
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Figure 17: Scene graph model in the SAI style, as proposed in [14].

example, a Pulsar triggers a regular sampling of some input device encapsulated in a user input cell and
corresponding data structures. The state of the device is then used in a control cell to affect the state of the
model, in this case the position and parameters of the virtual camera. In a push approach, more suitable for
event based interfaces, the input device triggers the creation of pulses with state change induced messages,
which are then interpreted by the control cell.

Rendering and control are two completely independent streams, which could operate separately. For
example the exact same application could function perfectly without the control stream, although it would
no longer be interactive. Decoupling unrelated aspects of the processing has some deep implications. For
example, in this system, the responsiveness of the user control subsystem is not directly constrained by the
performance of the rendering subsystem. In general, in an immersive system, if the user closes her eyes,
moves her head and then reopens her eyes, she should be seeing a rendering of what she expects to be facing,
even if the system was not able to render all the intermediate frames at the desired rate. Furthermore, the
system can be seamlessly extended to include “spectators” that would experience the world through the
user’s “eyes” but without the control, or other users that share the same world but have separate interaction
loops involving different rendering, display and input modalities. All such loops would then have the same
status with respect to the shared world, ensuring consistent read and write access to the persistent data.

4.5.2 Modeling

The world model itself can evolve dynamically, independently of any user interaction. Simulating a dynamic
environment requires the use of models that describe its state at a given time, and the way it evolves in
time. These models are clearly persistent (and dynamic) data in the system. Implementing the necessary
SAI elements requires to carefully discriminate between purely descriptive data, processes, and process
parameters, and analyze how these model elements interact in the simulation. The design described in [14]
for 3-D modeling is directly inspired from VRML [5] and the more recent X3D [4]. The main descriptive
structure of the model is a scene graph, which constitutes a natural specialization of the FSF data model.
Figure 17 illustrates node types involved in the scene graph model. Descriptive nodes, such as geometry
nodes and the Shape, Appearance, Material and Texture nodes, are straightforward adaptations of their
VRML counterparts. The VRML Transform node, however, is an example of semantic collapse, combining a
partial state description and its alteration. A transform should actually be considered as an action, applied
to a coordinate system. It can occur according to various modalities, each with specific parameter types.
Consequently, in our model, geometric grouping is handled with Coordinate System nodes, which are purely
descriptive. In order to provide a complete state description in a dynamic model, the Coordinate System
node attributes include not only origin position and basis vectors, but also their first and second derivatives.
Various transforms are implemented as cells, with their specific parameter nodes, that are not part of the
scene graph (although they are stored in the same source). Scene graph elements can be independently
organized into semantic asset graphs, by using the Shared Instance node, instances of which can replace
individual node instances in the scene graph, as illustrated for a material node in Figure 17.

Animation, i.e. scene evolution in time, is handled by cells implementing specific processes, whose
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Figure 18: A rendered frame of the (animated) 3-D model with texture mapping from a live video stream.

parameter nodes are not part of the scene graph itself. This ensures that both persistent data, such as the
scene graph, and volatile data, such as instantaneous description of graph components evolution, are handled
consistently. This aspect is critical when simultaneous independent processes are in play, as it is often the
case in complex simulations. Process parameters can also evolve in time, either as a result of direct feed-back
or through independent processes.

The analytical approach followed for modeling, by separating descriptive data, processes, and process
parameters, supported by a unified and consistent framework for their description and interaction, allows to
integrate seamlessly 3-D graphics, video streams, audio streams, and other media types, as well as interaction
streams. All these independent streams are in effect synchronized by the well defined and consistent use of
shared data, in this case the scene graph and the virtual camera.

Figure 18 shows a rendered frame of a world composed of four spheres and four textured rectangles,
rotating in opposite directions. Two fixed lights complete the model. A video stream captured live is used
as texture for the rectangles. Although this setting is not immersive (in the interest of the picture), the
same system can easily made immersive by modifying the scene. The user may be placed in the center of
the world, itself modeled by a cylindrical polygonal surface on which a video stream, possibly pre-recorded
from a panoramic camera system, is texture-mapped in real-time. The user, maybe using a head mounted
display, only sees the part of the environment she is facing, and may control her viewing direction using a
head tracker.

This application illustrates the flexibility and efficiency of the SAI architectural style. In particular,
thanks to the modularity of the framework, core patterns (e.g. rendering, control, animation, etc.) can be
effortlessly mixed and matched in a plug-and-play fashion to create systems with unlimited variations in the
specific modalities (e.g. mouse or tracker input, screen or head mounted display, etc.).

5 Architectural Properties

By design, the SAI style preserves many of the desirable properties identified in the Pipes and Filters model.
It allows intuitive design, emphasizing the flow of data in the system. The graphical notation for conceptual
level representations give a high level picture that can be refined as needed, down to implementation level,
while remaining consistent throughout. The high modularity of the model allows distributed development
and testing of particular elements, and easy maintenance and evolution of existing systems. The model also
naturally supports distributed and parallel processing.

Unlike the Pipes and Filters style, the SAI style provides unified data and processing models for generic
data streams. It supports optimal (theoretical) system latency and throughput thanks to an asynchronous
parallel processing model. It provides a framework for consistent representation and efficient implementation
of key processing patterns such as feed-back loops and incremental processing along the time dimension. The
SAI style has several other important architectural properties that are out of the scope of this overview.
These include natural support for dynamic system evolution, run-time reconfigurability, self monitoring, etc.

A critical architectural property that must be considered here is performance overhead. Some aspects of
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Figure 19: Scalability with respect to throughput.

the SAI data and processing models, such as filtering, involve non trivial computations, and could make the
theory impractical. The existence of fairly complex systems designed in the SAI style and implemented with
MFSM show that, at least for these examples, it is not the case.

A closer look at how system performance is evaluated and reported is necessary at this point. It is
not uncommon to provide performance results in the form: “the system runs at n frames per second on a
Processor X system at z {K,M,G}Hz.” For example, the segmentation and tracking system presented in the
last section runs at 20 frames per second on 320x240 pixels frames. The machine used is a dual processor
Pentium 4 @ 1.7 GHz with 1Go memory. Note that the system does not only perform segmentation and
tracking: it also reads the frames from a file on disk or from a camera, produces a composite rendering of the
analysis results, and displays the resulting images on the screen. In order to make the results reproducible,
the hardware description should include the hard drive and/or camera and interface, the graphics card,
and how these elements interact with each other (e.g. the mother board specifications), etc. In practice,
such a detailed description of the hardware setting is tedious to put together, and probably useless, since
reproducing the exact same setting would be difficult and even undesirable. Another inaccuracy in the
previous report is that it implies that 20 frames per seconds is the best achievable rate in the described
conditions (which is incidentally not the case). Reporting best case performance is not very useful, as a
system that takes up all the computing power to produce a relatively low level output, meaningful only in
the context of a larger system, is not of much use beyond proof of concept. If the algorithm is going to be
used, an evaluation of its computational requirements as part of a system is necessary.

Performance descriptions of the type described above only provide a partial and fuzzy data point that
alone does not allow to predict for example how the system will perform on another (hopefully) more powerful
hardware platform, or how it will scale up or down in different conditions (frame rate, image resolutions,
etc.). Theoretical tools such as algorithmic complexity analysis can certainly help in the prediction, if the
properties of the other elements involved in the overall system is understood. Hardware components can
certainly be sources of bottlenecks, for example disk speed (for input or output) and camera rate can be
limiting factors. On the software side, it is also necessary to understand not only the contribution of each
algorithm, but also that of the environment in which they are implemented.

Figure 19 shows new experimental scalability tests performed on applications designed in the SAI style.
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The results are in accordance with those reported in [18]. The figure plots processing load, in percent,
against processing rate, in frames per seconds, for an application performing video capture, segmentation by
change detection, and result visualization, and the same plot for the same application with the segmentation
turned off (the image displayed is the input). Both applications scale linearly with respect to throughput.
All conditions being equal, the difference in slope between the two curves characterizes the processing load
imposed by the segmentation part. Note that these tests were performed on a dual processor machine, so that
the processor load is an average of the load of both processors. Because of the parallelism (multithreading
in this case), the overall load is balanced between the two processors (by the operating system in this case).
As a result, the system is completely oblivious to the 50% cpu load barrier. The figure also plots system
latency, in ms, against processing rate, for both applications. The latency remains constant as long as
system resources are available. In a sequential system, the latency would be directly proportional to the
throughput, and in fact dictate the maximum achievable throughput. When a bottleneck is encountered
(or some resources are exhausted), latency increases and system performance degrades. The segmentation
application performance (in terms of latency) starts degrading around 55 frames per seconds, although the
system can still achieve rates above 70 frames per second in these conditions.

These plots suggest that: (1) as long as computing resources are available, the overhead introduced by
the SAI processing model remains constant, and (2) the contribution of the different processes are combined
linearly. In particular, the model does not introduce any non-linear complexity in the system. These
properties are corroborated by empirical results and experience in developing and operating other systems
designed in the SAI style. Theoretical complexity analysis and overhead bounding are out of the scope of
this document.

6 MFSM: An Architectural Middleware

MFSM (Modular Flow Scheduling Middleware) [12] is an architectural middleware implementing the core
elements of the SAI style. MFSM is an open source project, released under the GNU Lesser General Public
License [1]. The goal of MFSM is to support and promote the design, analysis and implementation of
applications in the SAI style. This goal is reflected in the different facets of the project.

• The FSF library is an extensible set of implementation-level classes representing the key elements of
SAI. They can be specialized to define new data structures and processes, or encapsulate existing ones
(e.g. from operating system services and third-party libraries).

• A number of software modules regroup specializations implementing specific algorithms or functional-
ities. They constitute a constantly growing base of open source, reusable code, maintained as part of
the MFSM project. Related functional modules may be grouped into libraries.

• An evolving set of example applications illustrates the use of FSF and specific modules.

• An evolving set of documents provides reference and example material. These include a user guide, a
reference guide and various tutorials.

Figure 20 shows the overall system architecture suggested by MFSM. The middleware layer provides
an abstraction level between low-level services and applications, in the form of SAI software elements. At
the core of this layer is the Flow Scheduling Framework (FSF) [13, 17], an extensible set of foundation
classes that implement SAI style elements. The generic extensible data model allows to encapsulate existing
data formats and standards as well as low-level service protocols and APIs, and make them available in a
system where they can interoperate. The hybrid shared repository and message passing communication and
parallel processing model supports control, asynchronous concurrent processing and synchronization of data
streams. The application layer can host a data-stream processing software system, specified and implemented
as instances of SAI components and their relationships.

In its current implementation, the FSF library contains a set of C++ classes implementing SAI elements:
the source, the nodes and pulses, the cells, the filters, the handles. It also contains classes for two implemen-
tation related object types: the factories and the System. An online reference guide [12] provides detailed
interface description and implementation notes for all the classes defined in the FSF library.
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Figure 20: Overall system architecture suggested by MFSM.

7 Conclusion

7.1 Summary

This report introduced SAI, a software architecture model for designing, analyzing and implementing appli-
cations performing distributed, asynchronous parallel processing of generic data streams. The goal of SAI
is to provide a universal framework for the distributed implementation of algorithms and their easy integra-
tion into complex systems that exhibit desirable software engineering qualities such as efficiency, scalability,
extensibility, reusability and interoperability.

SAI specifies a new architectural style (components, connectors and constraints). The underlying ex-
tensible data model and hybrid (shared repository and message-passing) distributed asynchronous parallel
processing model allow natural and efficient manipulation of generic data streams, using existing libraries or
native code alike. The modularity of the style facilitates distributed code development, testing, and reuse,
as well as fast system design and integration, maintenance and evolution. A graph-based notation for ar-
chitectural designs allows intuitive system representation at the conceptual and logical levels, while at the
same time mapping closely to processes.

Architectural patterns were illustrated through a number of Computer Vision-related demonstration
projects ranging from single stream automatic real-time video processing to fully integrated distributed
interactive systems mixing live video, graphics, sound, etc. By design, the SAI style preserves desirable
properties identified in the classic Pipes and Filters model. These include modularity and natural support
for parallelism. Unlike the Pipes and Filters model, the SAI style allows to achieve optimal (theoretical)
system latency and throughput, and provides a unified framework for consistent representation and efficient
implementation of fundamental processing patterns such as feed-back loops and incremental processing along
the time dimension.

SAI is supported by MFSM, an open source architectural middleware. The MFSM project is composed
of a solid foundation library and a constantly growing base of open source, reusable code. The project is
thoroughly documented, and comprises a user guide, reference guide and tutorials.

7.2 Perspectives

The SAI architectural style exhibit properties that make it relevant to research, educational and even indus-
trial projects.
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Thanks to its modularity, it can accommodate today’s requirements while preparing for tomorrow’s
applications. Using the SAI style for research can not only save time by avoiding to re-develop existing
modules, it can also reduce the technology transfer time once the research has matured.

SAI also allows distributed development of functional modules, and their seamless integration into com-
plex systems. The modularity of the design also allows gradual development, facilitating continuing validation
and naturally supporting regular delivery of incremental system prototypes. A number of cross-disciplinary
research projects, in addition to those described above in section 4, are already leveraging these properties.
They are producing real-time, interactive systems spanning a range of research domains.

Using the SAI style for research can also reduce the technology transfer time once the research has
matured. From an industry point of view, the SAI style allows fast prototyping for proof-of-concept demon-
strations.

For education, SAI allows to efficiently relate classroom projects to the realities of the research laboratory,
and of industrial software development. A project-oriented Integrated Media Systems class based on SAI,
and applying the distributed development model, was taught at USC in the Fall 2002 semester at the advance
graduate level. Rather than having small teams of students develop a same, simple complete project, the
small teams first implemented complementary parts of an overall, much more complex project (distributed
soccer game). After six weeks of distributed development, sanctioned by careful incremental cross-testing,
all the pieces were put together to produce a playable system. The course was an outstanding success, and
regular graduate and undergraduate courses based on this model are in the planning.

Beyond the ones highlighted in the context of this chapter, the SAI style has several important desirable
architectural properties that make it a promising framework for many applications in various fields. These
properties include natural support for dynamic system evolution, run-time reconfigurability, self monitoring,
etc. Application of SAI in various contexts is currently being explored (e.g. interactive immersive systems).
Short term technical developments for SAI include development of a Graphical User Interface for system
architecture design. Architecture validation and monitoring and analysis tools will be gradually integrated.

Finally, from a theoretical point of view, because of the explicit distinction between volatile and persistent
data, SAI is a unified computational model that bridges the conceptual and practical gap between signal
(data stream) processing on the one hand, and the computation of higher level data (persistent, dynamic
structures) on the other hand. As such, it might prove to be not only a powerful tool for implementing, but
also for modeling and reasoning about problems spanning both aspects. An example is Computer Vision.
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